
8.1.8

If T is the triangle with vertices1 (0, 0), (3, 0) and (3, 4), we are asked to
compute ∫

∂T

F · ds =

∫ ∫
T

Qx − Py

Which the equality comes from Theorem 3. This gives∫ 3

0

∫ 4x/3

0

10y − 8y dy dx =

∫ 3

0

(
4x

3

)2

dx = 16

8.1.18

By picking P =
∂f

∂y
and Q = −∂f

∂x
we can apply Green’s Theorem and

∫
∂D

P dx+Q dy =

∫ ∫
D

Qx − Py dA =

=

∫ ∫
D

−
(
∂2f

∂x2
+
∂2f

∂y2

)
dA =

∫ ∫
D

0 dA = 0

8.1.23

Parametrizing x = a cos t, y = b sin t, and hence dx = −a sin t dt and dy =
b cos t dt Theorem 2 yields

A =
1

2

∫
∂D

x dy − y dx =

∫ 2π

0

ab(cos2 t+ sin2 t) dt =

=
1

2

∫ 2π

0

ab dt = abπ

8.2.16

Green’s Theorem states that the integral of ∇ × F over a surface S is the
integral of F over its boundary. Hence if two surfaces S and S ′ have the

1Actually the problem does not specify the origin, so we shall suppose it is (0, 0)
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same boundary, the previous integral is the same. In our case it is easier to
integrate it over the portion of the plane inside the circle, since ∇ × F ≡
(−2,−2,−2), which is −

√
12 times the normal unit vector pointing outwards.

This gives that the integral is just −
√

12 times the area of the circle.

The distance from the plane to the origin is given by the distance point-plane

formula, which yields
1√
3

in our case. Hence the radius of the circle by the

Pythagorean Theorem is

√
2√
3

and thus the area is

A =
2

3
π

And the integral gives
−2
√

12π

3
.

8.2.25

If we draw a closed loop C over the surface, the loop separates it into two
surfaces S1, S2, which have as boundary C but with different orientations.

Then by Green Theorem∫ ∫
S

∇× F · dS =

∫ ∫
S1

∇× F · dS +

∫ ∫
S2

∇× F · dS =

=

∫
C+

F · ds+

∫
C−

F · ds = 0

8.3.14

If we parametrize x = cos t, y = sin t, z = 0 we have∫
C

F · ds =

∫ 2π

0

(cos t sin t, 0, 0) · (− sin t, cos t, 0) dt =

∫ 2π

0

− sin2 t cos t dt

Which is a symmetric function around 0. Hence the integral vanishes and
the circulation is 0.

8.3.16
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(a) Since the value of x2 + y2 is 1, we have that the integral is the same as∫
C

x dy − y dx

Which is two times the area of C, which is 2π.

(b)The integral of F over the unit circle is nonzero, which contradicts part
(i) of Theorem 7.

(c) We have
∂Q

∂x
=
∂P

∂y
=

y2 − x2

(x2 + y2)2

But the corollary doesn’t have to hold, since F is not C1 in all R2. In fact it
is not defined at (0, 0).

8.4.6

Let B be the unit ball, which has ∂B as the unit sphere. Then by Gauss’s
Theorem we have∫ ∫

∂B

F · dS =

∫ ∫ ∫
B

∇ · F dV =

∫ ∫ ∫
B

3(x2 + y2 + z2) dx dy dz

In spherical coordinates we have (x2 +y2 +z2) = ρ2 and it is well known that
the Jacobian of the change is ρ2 sinφ. Then we have that the integral is just∫ π

0

∫ 2π

0

∫ 1

0

3ρ4 sinφ dr dθ dφ =
12

5
π

8.4.7

Let us compute the integral over the top face S, which can be parametrized
by (u, v, 1) with 0 ≤ u, v ≤ 1. Then we have Tu timesTv = (0, 0, 1) and hence∫ ∫

S

F · dS =

∫ 1

0

∫ 1

0

(u, v, 1) · (0, 0, 1) du dv = 1

Now if we parametrize the bottom face as (v, u, 1) (the normal vector has to
point outwards!) we get Tu × Tv = (0, 0,−1) and in this case∫ ∫

S

F · dS =

∫ 1

0

∫ 1

0

(u, v, 0) · (0, 0, 1) du dv = 0
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Analogously, we get 1 and 0 for each other pair of opposite faces, and thus
the total integral is 1 + 0 + 1 + 0 + 1 + 0 = 3.

We can check this result directly by using Gauss Theorem: If C is the unit
cube then

∫ ∫
∂C

F · dS =

∫ ∫ ∫
C

∇ · F dV =

∫ ∫ ∫
C

3 dV

Which is three times the volume of the cube. This gives 3 as desired.

8.4.16

Since F · n dA = F · dS we can use Gauss’s Theorem and hence∫ ∫
∂S

F · n dA =

∫ ∫ ∫
S

∇ · F dV =

∫ ∫ ∫
S

(x2 + y2)2 dV

By plugging cylindrical coordinates we have x2 + y2 = r2 and that the deter-
minant of the Jacobian of the change is r. This gives that the integral can
be transformed to ∫ 1

0

∫ 2π

0

∫ 1

0

r5 dr dθ dz =
π

3
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