8.1.8

If T is the triangle with verticed] (0,0), (3,0) and (3,4), we are asked to

Which the equality comes from Theorem 3. This gives
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8.1.18
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By picking P = a—f and @) = _8_f we can apply Green’s Theorem and
Yy x
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Parametrizing x = acost,y = bsint, and hence dv = —asint dt and dy =
bcost dt Theorem 2 yields
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8.2.16

Green’s Theorem states that the integral of V x F' over a surface S is the
integral of F' over its boundary. Hence if two surfaces S and S’ have the

! Actually the problem does not specify the origin, so we shall suppose it is (0, 0)



same boundary, the previous integral is the same. In our case it is easier to
integrate it over the portion of the plane inside the circle, since V x F =
(—2, =2, —2), which is —v/12 times the normal unit vector pointing outwards.
This gives that the integral is just —/12 times the area of the circle.

The distance from the plane to the origin is given by the distance point-plane

formula, which yields —= in our case. Hence the radius of the circle by the
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Pythagorean Theorem is — and thus the area is
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And the integral gives
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8.2.25

If we draw a closed loop C' over the surface, the loop separates it into two
surfaces 51, S, which have as boundary C' but with different orientations.

Then by Green Theorem
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If we parametrize x = cost, y = sint, z = 0 we have

8.3.14
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/F-ds:/ (costsint,0,0) - (—sint, cost,0) dt:/ —sin®tcost dt
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Which is a symmetric function around 0. Hence the integral vanishes and
the circulation is 0.

8.3.16



(a) Since the value of 2 4 y? is 1, we have that the integral is the same as

/chy—ydx
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Which is two times the area of C', which is 2.

(b)The integral of F' over the unit circle is nonzero, which contradicts part
(i) of Theorem 7.

(c) We have

0Q oP P —a?
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But the corollary doesn’t have to hold, since F' is not C! in all R%. In fact it
is not defined at (0,0).

8.4.6

Let B be the unit ball, which has 0B as the unit sphere. Then by Gauss’s
Theorem we have
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In spherical coordinates we have (z*+y?+ 2%) = p? and it is well known that
the Jacobian of the change is p? sin ¢. Then we have that the integral is just
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Let us compute the integral over the top face S, which can be parametrized
by (u,v,1) with 0 < u,v < 1. Then we have T,, timesT, = (0,0, 1) and hence

//SF'dS:/Ol/Ol(“’”al)'(0,0,1) du dv =1

Now if we parametrize the bottom face as (v, u, 1) (the normal vector has to
point outwards!) we get T,, x T, = (0,0, —1) and in this case

//F ds = //qu (0,0,1) du dv =0

8.4.7



Analogously, we get 1 and 0 for each other pair of opposite faces, and thus
the total integral is 1+0+1+4+0+1+4+0 = 3.

We can check this result directly by using Gauss Theorem: If C' is the unit
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Which is three times the volume of the cube. This gives 3 as desired.
8.4.16

Since F'-n dA = F -dS we can use Gauss’s Theorem and hence
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By plugging cylindrical coordinates we have 22 4 3? = r? and that the deter-
minant of the Jacobian of the change is r. This gives that the integral can

be transformed to L oor
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